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1    Definition 

1.1    Background 

 

This project will train a text recognizer on Kaggle through NLP to train Quora 400mb with a 
total of 404290 data on the problem group, and will measure the final results of participation in 
the competition with log-loss. 
There are hundreds of millions of users on Quora, so these users will inevitably ask repeated 
questions, so there may be many questions on Quora. Quora is based on the random forest 
algorithm [1], based on the decision tree algorithm to determine Whether two questions are 
duplicates, so our goal is to calculate whether every two questions are duplicates or not. Doing 
so will make Quora's questions more streamlined and more impressive, and the community 
will have higher quality questions and answers. 
The data set used in the project is provided by Quora, where the data is manually labeled, so 
there may be errors [2]. In addition to errors, Kaggle's anti-cheating mechanism, in order to 
avoid the accidental nature of the contestants, kaggle added some data to the test.csv file, 
which also increased the difficulty of the competition, and the accuracy of our recognition will 
decline. 
 

1.2    Question Analysis 

The data of the project comes entirely from the actual problem. Due to the repetitive nature of 
the problem, it is a difficult problem to judge, which belongs to the np problem. The following 
example is from kaggle and can be used to illustrate the uniqueness of this project: 

 

Q1:  What is the ​biggest​ natural number? 

Q2: What is the ​smallest​ natural number? 

It is easy to see that this is two different. If you simply quote the similarity algorithms common 
in NLP, such as Euclidean distance algorithm, Pearson correlation coefficient, or Jeckard 
coefficient calculation, it is easy to get the opposite result: because all the words in them are 
the same except the most critical word, biggest. And smallest. These two words are very 
important, so we can't just compare whether there are more similar words in the two questions, 



and decide whether there is a higher probability. So we need to measure the importance of 
words, not the number of words in common. 

1.3    Measurment 

Because I use the kaggle platform, this platform uses the log-loss function [3] to measure the 
accuracy of the model. This function will compare our final result set with the results of manual 
labeling, and finally get a A number from 0 to 1. The smaller the number, the more accurate 
the model. The log-loss mathematical consensus is as follows: 

 

[ y  log(p ) 1 y ) ]− 1
N ∑

N

i=1
 i i + ( −  i  

 

Where N represents the size of the data set, pi represents the prediction result of the model at 
label i, and yi represents the prediction result of the final official model of Kaggle. We can 
observe that in order to make our log-loss value smaller, as a contestant, we can reduce the 
value of pi as much as possible. 

2    Analysis 

2.1    Behavior Analysis 

Among them, Quora provides a total of 2 data sets train.csv, test.csv and. The main thing we 
use to build the model is train.csv, so first observe the characteristics of train.csv, as shown in 
the figure: 

 

 id qid1 qid2 question1 question1 is_duplicate 

0 0 1 2 
What is the step by step 

guide to invest in sh... 

What is the step by step 

guide to invest in sh... 
0 



1 1 2 4 
What is the step by step 

guide to invest in sh... 

What would happen if the 

Indian government sto... 
0 

2 2 5 6 

How can I increase the 

speed of my internet 

co... 

How can Internet speed 

be increased by 

hacking... 

0 

 

As can be seen from the figure, there are 6 columns, and the id represents the pairing id of the 
problem pair. qid1, qid2 represent the ids of the pairing questions, question1, question2 are 
the detailed descriptions of the questions, id_duplicate represents whether the two questions 
are duplicated, 0 is no, 1 is yes. In addition, you can see that the problem with qid of 2 in the 
first and second lines appears twice, that is, the same problem can occur multiple times, which 
results in the occurrence of certain words more often The frequency is not uniform, and the 
trained model may tend to words that appear more frequently. So in the first step we need to 
make statistics on the frequency of problems. 

2.2    Frequency Analysis 

 
 

 
 
 
This is a histogram of the distribution of the number of occurrences of the problem that I drew 
using matplotlib. From the above figure, we can see that most problems only occur once, of 



course, there is also one problem that appears nearly 60 times, so the matching degree of the 
problem is It is uniform and does not have much impact on the results of our training. Such a 
data set is also a relatively standard data set. In addition, I also calculated the ratio of positive 
data. The calculation method is as follows: 

 

P  T =  ∑
N

i=0
N
T i  

Where N represents the total data set of train.csv, and T is the column of is_duplicate. 
Through this formula (that is, calculating the average value), the final ratio of our positive data. 
The final result is 37%. Positive data is very helpful for my results, which will be discussed in 
the next chapter. 

 

2.3    Length, Quantity Distribution 

 

The problem length measurement is also very helpful for our model construction. Imagine this 
question: What is the relationship between the problem length and the problem similarity? The 
answer is of course that most of the similar questions have the same length. With the help of 



matplotlib, I plotted the length distribution histograms of train.csv and test.csv. By analyzing 
the length, we can see from the above problem length distribution histogram that most 
problems are between 25-75 characters , So for both training and test sets, these problem 
pairs have about the same length. 
By analyzing the length of the problem, it is helpful for us to study the similarity of the problem. 
Next, we need to analyze the words in more detail, specifically the number of words in the 
problem. Although most problems have the same length from the above picture, this does not 
mean that most of these problems have similar word lengths. Some problems may have 
17-character words such as biotransformation, but they are paired. Questions appear with 5 
cat words totaling 15 characters, so their question lengths will be the same. Therefore, we 
predict that if the word distribution map is roughly similar to the above figure, it means that 
most problems have the feature of similar words. 

 

 

The above is a histogram of the word distribution in each question. The number of words in 
most questions is less than 20, and you can see that this is roughly the same as the first 
picture, so we have come to the conclusion that most questions have similar words This also 
laid the foundation for making bold assumptions in our subsequent research. 

 

 



2.4    Word Cloud Analysis 

Before I study further, I need to understand that the problem mentioned at the beginning may 
not necessarily have the same length (even if there are the same number of words), and there 
is a very high word coincidence rate, so I conclude that they are duplicate problem. So in order 
to solve this problem, I made a word cloud to observe the frequency of words. 

 

 

In the picture above, the number of words appears. It can be seen that the word that appears 
the most is best, then the way, will ... These words appear the most. According to the logic of 
our question, these words are some dummy words. Such a question: what is the best way 
to…? The most important thing is the second half of the question. These words don't seem to 
be keywords, just some words. More rigorous research will be mentioned later. 

 



2.5    Algorithm and Techniques 

2.5.1 TF-IDF Algorithm 

Here I use the TF-IDF (term frequency-inverse document frequency) algorithm. The biggest 
benefit of this algorithm is to measure the importance of the word. It should be noted that the 
importance of the word is not linearly related to the occurrence frequency of the person. 
Understand that TF-IDF works like this: importance increases in proportion to the number of 
times a word appears in a document, but is offset by the frequency of words in the corpus. So 
this is why search engines often use variants of the TF-IDF weighting scheme as the central 
tool for scoring and ranking the relevance of documents given a user query. 
Applying the TF-IDF algorithm in our actual project can not be more suitable, because most of 
these words are hypothetical words observed from the word cloud above. Using TF-IDF can 
eliminate this logical necessity, thus Make our model successfully identify repetitive problems 
based on the importance of words. 

2.5.2 TF-IDF Analysis 

TF-IDF is divided into two parts. The first is the TF part, which is the word frequency. It refers 
to the probability of a given word appearing in the file. TF looks the same as our ordinary 
problem of measuring NPL similarity. In fact, it is to normalize the number of words and 
prevent the problem of longer characters. The specific expression formula is as follows: 
 

F  T i, j =
n i, j

n ∑
 

 
 k i, j , k

  

It should be noted that the ni, j, kni, j, k represent the number of occurrences of all words in the 
entire csv file, so TFi, j represents the word frequency of the words ni, j. Therefore, we can see 
that if a word appears more often, its TF will increase; if it appears less, its TF will decrease. 
The second part is IDF, the inverse document frequency. This is a measure of the universal 
importance of a word. The specific formula is as follows: 
 

 

DF  lg( )I i =  | D |
|{  j : t  ∈ d }| + 1i j 

 

Where | D | is the total number of words, | {j: ti dj} | represents the number of times the word j 
appears, and 1 is to prevent the denominator from being 0. So we can see that IDFi is different 
from ID, because the more times a word appears, the larger the denominator of IDFi, the 



smaller the overall value of IDFi; and vice versa. The final step is to merge our TF-IDF, the two 
of them jointly determine the importance of a word. 
 

 

F DF   TF   IDF  T − I i, j =  i, j ×  i  

The final word importance is jointly determined by TF-IDF. On the one hand, TF guarantees 
that many words appear high in importance, on the other hand, IDF offsets this bias, thereby 
retaining the importance of rare words. In general, the high-frequency words in a particular file 
and the low-frequency words in the entire word database set, using TF-IDF can produce 
higher weight. Therefore, TF-IDF tends to filter out common words and retain important words 
[4]. 

 

2.5.3 XGBoost 

In this project, I used the XGBoost training model. Next, I will introduce why I chose XGBoost 
instead of other models. XGBoost has the following characteristics: The first is to speed up our 
training, because the parallel calculation is adopted and written in C ++, so the calculation 
speed is faster than the traditional model in sklearn [5], the following is Zhang Tu is the reason 
why parallel computing is faster than ordinary computing. The CPU processes more tasks per 
unit time, so it is more efficient. 

 



 

Secondly, the parameter setting of XGBoost is very convenient. For example, our 
evaluateaiton_metricx is simply set to the log_loss evaluation matrix by params [‘eval_metric’] 
= ‘logloss’, which facilitates subsequent submission verification. 
 
The third point is that our model sets logistic regression. The reason for adopting this model is 
that our word importance does not show a linear relationship with the frequency of word 
frequency, and so logistic regression is more in line with the context. Here I use the binary 
logistic regression, the formula is as follows: 

 

(θ) ost( h (x ）, y )J =  1
m ∑

m

i=1
C θ

(i )  (i )  

The Cost function is as follows. The Cost function exists in all classification methods, such as 
linear function, logistic regressino, Decision tree ... But the cost function of each model is 
different. Here is the Cost function of logistic regression: 

 

ost ( h , y ) og (h (x ) )              if  y = 1C θ  =  − l θ =   

  og ( 1 h (x ) )     if  y = 0  =  − l −  θ =   

What needs to be explained is that h (x) is our logistic function. In order to specifically explain 
the principle, its formula is as follows: 

 

 (x ) h θ =  1
1 + e −θ xT  

Pushing down from the bottom is a Dataframe composed of the weights after our final 
rebanlance. The Cost function calculates the deviation of the model so that it will continue to 
shrink during regression and finally get a satisfactory model. The final J () is our true 
regression function, where m is the total number of rows in the Dataframe, y is the 
is_duplicated column, y == 1 means it is a duplicate problem, and y == 0 means it is not a 
duplicate column. In XGBoost, I ended up setting the loop to repeat 400 times. Repeating the 
loop many times will cause overfitting, and too few will cause underfitting. The initial 400 is 
based on the output of get_booster (). Best_iteration function of XGBoost. Finally, this section 
explains why binary classification is used: because our final result is only two, repeated or 
non-repeated. 

 



2.6   Technical Support 

Because this project is a natural language processing problem, Python's NLTK package is 
used. The NLTK package is an easy-to-use interface that uses more than 50 corpora and 
vocabulary resources (such as WordNet), and a set for classification and tokenization. Text 
processing library for stemming, tagging, parsing, and semantic reasoning, wrappers for 
industrial-grade NLP libraries, and active discussion forums. Therefore, based on a mature 
platform and a wide range of users, I chose NLTK to use it in the project, mainly using the 
stopword function of NLTP, which can help me clean the data and convert all questions into 
words, which facilitates subsequent word frequency statistics TF-IDF calculation. 
In addition, sklearn is still used. The most important thing is to calculate the accuracy of the 
model and verify the log_loss and roc_auc_score of the model. 

3    Procedures 

Here is flow chart of the procedures： 

3.1    Data Cleaning 

The first step is data cleaning, which includes the most important tool is stop_words in nltk and 
the Collection package that comes with Python, so the basic process is as follows: 



3.2    word_sharing of easy_submisstion 

The navie_submission in the second part is to explore a simple word frequency statistics 
method, and then submit the final text. In order to facilitate later comparison, the words with 
the same word_sharing are visualized. 

 

 

 

It can be seen that most of the duplicate data is less than 0.5, and most of the duplicate data is 
greater than 0.5. For more detailed conclusions, I calculated the proportion of data greater 
than 0.5 in the duplicate and duplicate data, respectively: 

 

unduplicaet：0.2765432 

duplicate:  0.5269956  

This means that the vast majority of problem pairs in unduplicate data have fewer identical 
words, and the vast majority of words in duplicate words have more identical words. This 
conclusion is more in line with our common sense. But it cannot be ignored that 27.6% of the 
data in the unduplicate problem have more than 50% similarity. So we need to do the TF-IDF 
algorithm for these problems and re-measure its weight. But before that, let's do a simple 
easy_submission to observe the score obtained from the data without TF-IDF processing. The 
result is 0.5432, which is not very high. This simple_submission needs to reduce log-loss to 
improve the accuracy of the model degree. 

 



3.3    TF-IDF Implementation 

 

 

Comparing this picture with the above picture, we find that the distribution in this picture is 
more uniform in word_share, rather than scattered and scattered in word_sharing. For the 
convenience of observation, I also calculated the proportion of data greater than 0.5 in this 
TF-IDF graph: 
 

Unduplicate: 0.2484834 

     Duplicate:     0.5633981  

Both of these data are higher than the TF-IDF data that was simply sought before, so the 
conclusion is that most of the problems in Unduplicate are less "important" (because TF-IDF 
calculates words Of importance, but in my previous function, the sum of the weights of the 
words is calculated, so it represents the importance of the problem; in Duplicate's data, most 
problems are more "important"; and TF-IDF's Values ​​higher than word_sharing represent the 
importance of the problem over the similarity between words. 

 

 



3.4    Training TF-IDF Data 

The next step is the training data. The following is the process of training data: 

 

 

 

3.4.1     Data Preparation 

After completing the construction of the TF-IDF function, my work is to apply the questions in 
the test.csv file to apply. (TF-IDF), then you can get the TF-IDF values ​​of all the question pairs; 
here we need to pay attention to Be sure to first divide the ross_validation step, divide the 
dataframe into x_train, x_valid, y_train, y_valid, and then sample train.csv and val, so as to 
facilitate subsequent inspection. 

 

 



3.4.2    XGBoost Training 

The parameter that XGBoost needs to set is the learning rate, the data needs to be stored in 
the form of DMatrix, and the training algorithm is binary logistic regression, so after setting 
these parameters, you can train the data. The following is a partial screenshot of 400 trainings, 
which can be maintained until the final train_logloss remains the same: 

 

 



It can be seen that the value of log-loss is continuously falling, which is in line with our 
expectations. The final iteration of 400 times reached a satisfactory result of 0.161581. 

4    Result 

4.1    Kaggle Competition 

Because kaggle is a competition-type platform, you can submit data to compete with other 
players, and the final results will be displayed on the leaderboard. Therefore, as the most 
contestant, I also submitted the final final_submission.csv and other players. Here are the 
rankings on the leaderboard:

 

 

It can be seen that the final ranking is 432, which is the top 14%, so our model is also 
relatively successful. 

 



4.2    Comparison of Others 

At the end of the competition, I also tried to observe the kernal of other players, and compared 
with them, and found the following deficiencies: 

-The feature found is not enough. In the sharing of player Jared [6], there is a feature that can 
reduce the log-loss value of his kernel by 0-0.1. This feature is mainly based on the frequency 
of problems and exists in the question. He stored this feature through hashtable and then 
performed count_value, so the final score can be greatly improved. 

-The second point is the correctness of the data itself. The competitor CPMP [7] mentioned in 
his sharing how he corrected 25% of the incorrect information in the data generated by the 
computer. The method is Peter Vorvig's spell checker [8]. Simply put, there are many word 
vectors, and then the correct words are obtained by comparison. Therefore, if the word in the 
question is correct, it will be very helpful for subsequent training, especially in my TF-IDF. For 
example, a wrong word applo will have a large weight. This word Will be very important and 
the error will be very high. 

-The last point is the rationality of the algorithm. TF-IDF algorithm is a very mainstream 
algorithm. There is no doubt about it. Player Philipp [9] added t-SNE charts to TF-IDF. This 
can find more features, such as the normalized_share_count and subsampled_data he found. 
. These are useful for subsequent analysis. 

5    Conclusion 

5.1    Thoughts and Inspiration 

This project has brought me a lot of inspiration and thinking. Generally speaking, big problems 
need to be reduced to small problems, but still requires rigorous processes: 

 



1. What model to choose is PCA, bag of words, LDA, or TF-IDF. Of course, these 
must be selected according to feature engineering. This has led to my feature 
engineering exploration. Which feature should be selected, and which feature is 
useful. ? 

2. Similarity calculation methods, including cosine similarity algorithm, or edit 
distance. Of course, I chose the simplest word share method, because the 
amount of calculation is smaller, so I need to find a balance between calculation 
performance and algorithm complexity. 

 



5.2    Further Improvement 

The results above have stated better practices of other players, so I will do more work in 
feature engineering and find more useful features to enhance the accuracy of the model. And 
a correction will be made to the data itself, so that the automatically generated data 
interference is reduced, and the results are more accurate. 

 

5.3   Conjecture Model Optimization 

According to udacity's follow-up review suggestions, I have added new structural features. The 
main idea is to synthesize a sentence pair itself into a picture, which is explained as follows: 

 

 



Our original sampling method returned an imbalanced dataset with real examples of more 
duplicate pairs than non-repeated data. Therefore, we supplemented the dataset with negative 
data. One source of negative data is paired "relevant questions" that, although related to 
similar topics, are not truly semantically equivalent. So by composing the problem into a graph, 
we can rediscover new features and improve accuracy. 

In addition, I also used Peter Vorvig's spell checker, and the final log-loss value dropped a little 
to 0.16138: 

Because the previous navie_submission failed to board the leader_board because of time 
limitation, it is a bit regrettable: 
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